# A Jenkins-Serrin problem on the strip 

M. Magdalena Rodríguez<br>Laboratoire d'Analyse et de Mathématiques Appliquées, Université de Marne-la-Vallée, 5, Bd Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée, cedex 2, France

Received 4 July 2006; received in revised form 4 October 2006; accepted 20 October 2006
Available online 4 December 2006


#### Abstract

We describe the family of minimal graphs on strips with boundary values $\pm \infty$ disposed alternately on edges of length 1 , and whose conjugate graphs are contained in horizontal slabs of width 1 in $\mathbb{R}^{3}$. We can obtain as limits of such graphs the helicoid, all the doubly periodic Scherk minimal surfaces and the singly periodic Scherk minimal surface of angle $\pi / 2$. (C) 2006 Elsevier B.V. All rights reserved.


MSC: 49Q05; 53A10

Keywords: Minimal graph; Periodic minimal surface; Jenkins-Serrin problem; Toroidal half-plane layers; KMR examples

## 1. Introduction

Karcher [2,3] constructed a class of doubly periodic minimal surfaces, called toroidal half-plane layers, from minimal graphs, by extending such graphs by symmetries. More precisely, he considered the solution to the minimal graph equation on a rectangle with boundary values 0 on the longer edges and $+\infty$ on the shorter ones; and he extended such a minimal graph to a whole strip by rotating it by an angle $\pi$ about the straight segments corresponding to the boundary values 0 (see the upper picture in Fig. 2). The toroidal half-plane layer is obtained from this Jenkins-Serrin graph on the strip by considering the $\pi$-rotation about the vertical straight lines on its boundary. Such a doubly periodic example is denoted by $M_{\theta, \frac{\pi}{2}, \frac{\pi}{2}}$ in [7]. Indeed, this is a particular case in the three-parametric family of KMR examples $M_{\theta, \alpha, \beta}$, with $\theta \in\left(0, \frac{\pi}{2}\right), \alpha \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right], \beta \in[0, \pi)$ and $(\alpha, \beta) \neq(0, \theta)$, examples which have been classified in [6] as the only properly embedded, doubly periodic minimal surfaces with parallel ends and genus 1 in the quotient. Similarly to the construction of $M_{\theta, \frac{\pi}{2}, \frac{\pi}{2}}$, Karcher obtained the KMR example $M_{\theta, 0, \frac{\pi}{2}}$ by considering the solution to the Jenkins-Serrin problem on a rectangle with boundary values 0 on its longer edges and $+\infty,-\infty$ on its shorter ones (see Fig. 2, bottom). He also described a continuous deformation from $M_{\theta, \frac{\pi}{2}, \frac{\pi}{2}}$ to $M_{\theta, 0, \frac{\pi}{2}}$, which corresponds to the surfaces denoted by $M_{\theta, \alpha, \frac{\pi}{2}}$ in [7], with $\alpha \in\left[0, \frac{\pi}{2}\right]$, and pointed out that the intermediate surfaces did not have enough symmetries for constructing them as Jenkins-Serrin graphs.

We prove that it is possible to construct each $M_{\theta, \alpha, \frac{\pi}{2}}$, with $\alpha \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right]$, from a Jenkins-Serrin graph on a parallelogram $\mathcal{P}$ with boundary values $+\infty$ on its shorter edges and bounded data $f_{1}, f_{2}$ on its longer ones, and this

[^0]graph can be extended to a Jenkins-Serrin graph on the strip (see the middle picture in Fig. 2). In this case, such an extension does not consist of a rotation about a straight line, but of the composition of the reflection symmetry across the plane containing the parallelogram $\mathcal{P}$ and the translation by the shorter edges on $\partial \mathcal{P}$. In particular, it must hold that $f_{1}=-f_{2}$. Recently, Mazet [4] has constructed, in a theoretical way, these Jenkins-Serrin graphs on the strip.

Given $h>0$ and $a \in\left(\frac{-1}{2}, \frac{1}{2}\right]$, consider $p_{n}=(n-a, 0,-h)$ and $q_{n}=(n+a, 0, h)$, for every $n \in \mathbb{Z}$. We define the strip $S(h, a)=\left\{\left(x_{1}, 0, x_{3}\right) \mid-h<x_{3}<h\right\}$ and mark its boundary straight lines by $+\infty$ on the straight segments $\left(p_{2 k}, p_{2 k+1}\right),\left(q_{2 k}, q_{2 k+1}\right)$ and $-\infty$ on $\left(p_{2 k-1}, p_{2 k}\right),\left(q_{2 k-1}, q_{2 k}\right)$. Note that we do not consider $S\left(h, \frac{-1}{2}\right)$ because it coincides with $S\left(h, \frac{1}{2}\right)$.

Definition 1. We will say that a minimal graph defined on $S(h, a)$ solves the Jenkins-Serrin problem on $S(h, a)$ if its boundary values are $\pm \infty$ as prescribed above on each unitary segment ( $p_{n}, p_{n+1}$ ), $\left(q_{n}, q_{n+1}\right) \subset \partial S(h, a)$.

We know from [1] that, in order to solve the Jenkins-Serrin problem on $S(h, a)$, it must be satisfied that $\left|q_{0}-p_{0}\right|>1$; this is, $a^{2}+h^{2}>\frac{1}{4}$. We define the collection of marked strips

$$
\mathcal{S}=\left\{S(h, a) \mid h>0 \text { and } a \in\left(\frac{-1}{2}, \frac{1}{2}\right] \text { satisfy } a^{2}+h^{2}>\frac{1}{4}\right\} .
$$

Theorem 1. For every marked strip $S(h, a) \in \mathcal{S}$, there exist $\theta \in\left(0, \frac{\pi}{2}\right)$ and $\alpha \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right]$ such that a piece of the KMR example $M_{\theta, \alpha, \frac{\pi}{2}}$ solves the Jenkins-Serrin problem on $S(h, a)$. Moreover, if a minimal graph $M$ solves the Jenkins-Serrin problem on some $S(h, a) \in \mathcal{S}$ and its conjugate surface is contained in the slab $\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid 0<\right.$ $\left.x_{2}<1\right\}$ up to a translation, then $M$ must be a piece of a KMR example $M_{\theta, \alpha, \frac{\pi}{2}}$.

## 2. The KMR examples $M_{\theta, \alpha, \frac{\pi}{2}}$

We know [6] that the space of doubly periodic minimal surfaces in $\mathbb{R}^{3}$ with parallel ends and genus 1 in the quotient coincides with the family of KMR examples $\left\{M_{\theta, \alpha, \beta} \left\lvert\, \theta \in\left(0, \frac{\pi}{2}\right)\right., \alpha \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right], \beta \in[0, \pi),(\alpha, \beta) \neq(0, \theta)\right\}$, which has been studied in detail and classified in [7] (we will keep the notation introduced there). We do not consider the example $M_{\theta, \frac{-\pi}{2}, \beta}$ because it coincides with $M_{\theta, \frac{\pi}{2}, \beta}$, for every $\theta, \beta$. Here we sketch some properties of the subfamily $\left\{M_{\theta, \alpha, \frac{\pi}{2}}\right\}_{\theta, \alpha}$.

Given $\theta \in\left(0, \frac{\pi}{2}\right)$ and $\alpha \in\left[0, \frac{\pi}{2}\right]$, the minimal surface $M_{\theta, \alpha, \frac{\pi}{2}}$ is determined by the Weierstrass data

$$
g(z, w)=-\mathrm{i}+\frac{2}{\mathrm{e}^{\mathrm{i} \alpha} z-\mathrm{i}} \quad \text { and } \quad \mathrm{d} h=\mu \frac{\mathrm{d} z}{w}, \quad \mu \in \mathbb{R}-\{0\}
$$

(here $g$ is the Gauss map of $M_{\theta, \alpha, \frac{\pi}{2}}$ and $\mathrm{d} h$ is its height differential), defined on the rectangular torus $\Sigma_{\theta}=\{(z, w) \in$ $\left.\overline{\mathbb{C}}^{2} \mid w^{2}=\left(z^{2}+\lambda_{\theta}^{2}\right)\left(z^{2}+\lambda_{\theta}^{-2}\right)\right\}$, where $\lambda_{\theta}=\cot \frac{\theta}{2}$. The ends of $M_{\theta, \alpha, \frac{\pi}{2}}$, which are horizontal and of Scherk type, correspond to the zeros $A^{\prime}, A^{\prime \prime \prime}$ and poles $A, A^{\prime \prime}$ of $g$ (i.e. those points with $z=-\mathrm{ie}{ }^{-\mathrm{i} \alpha}$ and $z=\mathrm{i}^{-\mathrm{i} \alpha}$, respectively). And the Gauss map $g$ of $M_{\theta, \alpha, \frac{\pi}{2}}$ has four branch points on $\Sigma_{\theta}: D=\left(-\mathrm{i} \lambda_{\theta}, 0\right), D^{\prime}=\left(\mathrm{i} \lambda_{\theta}, 0\right), D^{\prime \prime}=\left(\frac{\mathrm{i}}{\lambda_{\theta}}, 0\right)$ and $D^{\prime \prime \prime}=\left(\frac{-\mathrm{i}}{\lambda_{\theta}}, 0\right)$.

The multivalued, doubly periodic map $z: \Sigma_{\theta} \rightarrow \overline{\mathbb{C}}$ is used in [7] to describe a conformal model of $\Sigma_{\theta}$ as a quotient of the plane by two orthogonal translations $l_{1}, l_{2}$. One of the advantages is that we can read directly the $z$-values in this model. A fundamental domain in $\mathbb{C}$ of the action of the group generated by $l_{1}, l_{2}$ is the parallelogram $\widetilde{\Sigma}_{\theta}$ represented in Fig. 1. Each vertical line on $\widetilde{\Sigma}_{\theta}$ corresponds to a horizontal level section of $M_{\theta, \alpha, \frac{\pi}{2}}$ (i.e. a set $x_{3}^{-1}$ (constant), where $x_{3}=\mathfrak{R} \int \mathrm{d} h$ on $\left.M_{\theta, \alpha, \frac{\pi}{2}}\right)$. The curve $\gamma$ drawn in Fig. 1 represents a homology class in $\Sigma_{\theta}-\left\{A, A^{\prime}, A^{\prime \prime}, A^{\prime \prime \prime}\right\}$ with vanishing period. Since the periods of $M_{\theta, \alpha, \frac{\pi}{2}}$ at its ends are

$$
\operatorname{Per}_{A}=\operatorname{Per}_{A^{\prime}}=-\operatorname{Per}_{A^{\prime \prime}}=-\operatorname{Per}_{A^{\prime \prime \prime}}=\left(\mu \frac{\pi \sin \theta}{\sqrt{1-\sin ^{2} \theta \cos ^{2} \alpha}}, 0,0\right)
$$

we conclude that every vertical line in $\widetilde{\Sigma}_{\theta}$ corresponds to a curve in $\Sigma_{\theta}$ with period $\pm \operatorname{Per}_{A}$. We fix $\mu$ so that $P=\operatorname{Per}_{A}=(2,0,0)$.


Fig. 1. The torus $\widetilde{\Sigma}_{\theta}$. The value appearing at each intersection point of a horizontal and a vertical line refers to the value of the $z$-map at the corresponding point.

The flux vectors of $M_{\theta, \alpha, \frac{\pi}{2}}$ at its ends are $\mathrm{Fl}_{A}=-\mathrm{Fl}_{A^{\prime}}=-\mathrm{Fl}_{A^{\prime \prime}}=\mathrm{Fl}_{A^{\prime \prime \prime}}=(0,-2,0)$. Thus we say that $A, A^{\prime \prime \prime}$ (resp. $A^{\prime}, A^{\prime \prime}$ ) are left ends (resp. right ends).

If we denote by $\widetilde{\gamma} \subset \Sigma_{\theta}$ the curve which corresponds in $\widetilde{\Sigma}_{\theta}$ to the horizontal line passing through $D, D^{\prime \prime \prime}$, then the flux of $M_{\theta, \alpha, \frac{\pi}{2}}$ along $\tilde{\gamma}$ equals $-\mathrm{Fl}_{A}$, and the period of $M_{\theta, \alpha, \frac{\pi}{2}}$ along $\tilde{\gamma}$ can be written as $T=\left(T_{1}, 0, T_{3}\right)$, with $T_{3} \neq 0$. In particular, $T$ is never horizontal, and $M_{\theta, \alpha, \frac{\pi}{2}}$ is a doubly periodic minimal surface with period lattice generated by $P, T$.

For every $\theta \in\left(0, \frac{\pi}{2}\right)$ and $\alpha \in\left[0, \frac{\pi}{2}\right]$, we can similarly define the surface $M_{\theta,-\alpha, \frac{\pi}{2}}$ which coincides with the reflected image of $M_{\theta, \alpha, \frac{\pi}{2}}$ with respect to a plane orthogonal to the $x_{1}$-axis. Finally, recall from [7] that the conjugate surface of $M_{\theta, \alpha, \frac{\pi}{2}}$ coincides (up to normalization) with the KMR example $M_{\frac{\pi}{2}-\theta, \alpha, 0}$, and its periods (resp. flux vectors) at the ends point to the $x_{2}$-direction (resp. $x_{1}$-direction).

### 2.1. Isometries of $M_{\theta, \alpha, \frac{\pi}{2}}$

The surface $M_{\theta, \alpha, \frac{\pi}{2}}$ has four horizontal straight lines traveling from left to right ends. The $\pi$-rotation about any of those straight lines induces the same isometry $S_{3}$ of $M_{\theta, \alpha, \frac{\pi}{2}}$, which corresponds to a symmetry of $\widetilde{\Sigma}_{\theta}$ across any of the two vertical lines passing through the ends.

Another isometry of $M_{\theta, \alpha, \frac{\pi}{2}}$, denoted by $\mathcal{D}$, is induced by the deck transformation, and corresponds to the central symmetry across any of the four branch points of $g$ in either $\mathbb{R}^{3}$ or $\widetilde{\Sigma}_{\theta}$.

The isometry group of $M_{\theta, \alpha, \frac{\pi}{2}}$, which is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{3}$, is generated by $S_{3}, \mathcal{D}$ and $R_{3}$, where $R_{3}$ corresponds to the composition of a reflection symmetry across the plane orthogonal to the $x_{2}$-axis containing the four branch points of $g$, with a translation by $(1,0,0)$. The isometry $R_{3}$ corresponds in $\widetilde{\Sigma}_{\theta}$ to the translation by half a vertical period; see Fig. 1.

When $\alpha=0, \pi / 2$, the isometry group of $M_{\theta, \alpha, \frac{\pi}{2}}$ is richer (it is isomorphic to $\left.(\mathbb{Z} / 2 \mathbb{Z})^{4}\right)$, but we will not use this fact in this work. This is the lack of isometries that Karcher referred to for the intermediate surfaces $M_{\theta, \alpha, \frac{\pi}{2}}, 0<\alpha<\frac{\pi}{2}$.

## 3. $M_{\theta, \alpha, \frac{\pi}{2}}$ as a graph over the $x_{1} x_{3}$-plane: $\tilde{S}_{\theta, \alpha, \frac{\pi}{2}}$

Consider the rectangular domain in $\widetilde{\Sigma}_{\theta}$ on the right of the middle vertical line. It corresponds to a piece of $M_{\theta, \alpha, \frac{\pi}{2}}$ (in fact, we know by $S_{3}$ that it is a half of $M_{\theta, \alpha, \frac{\pi}{2}}$ ), which is a noncompact, singly periodic minimal annulus bounded by four horizontal straight lines. We consider a component $\widetilde{S}_{\theta, \alpha, \frac{\pi}{2}}$ of the lifting of this annulus to $\mathbb{R}^{3}$, and call $S_{\theta, \alpha, \frac{\pi}{2}}$ a fundamental domain of $\widetilde{S}_{\theta, \alpha, \frac{\pi}{2}}$ (see Fig. 2).

We can assume that $D^{\prime \prime}$ lies at the origin of $\mathbb{R}^{3}$ and $R_{3}, \mathcal{D}$ are respectively given by the restrictions to $M_{\theta, \alpha, \frac{\pi}{2}}$ of

$$
\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}+1,-x_{2}, x_{3}\right), \quad\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(-x_{1},-x_{2},-x_{3}\right) .
$$

Take $h>\underset{\sim}{0}$ so that the four horizontal straight lines on the boundary of $S_{\theta, \alpha, \frac{\pi}{2}}$ lie in $\left\{x_{3}= \pm h\right\}$. Hence both $S_{\theta, \alpha, \frac{\pi}{2}}$ and $\widetilde{S}_{\theta, \alpha, \frac{\pi}{2}}$ are contained in the horizontal slab $\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid-h<x_{3}<h\right\}$. Moreover, the horizontal level sections of $S_{\theta, \alpha, \frac{\pi}{2}}$ (which correspond to the vertical lines of $\widetilde{\Sigma}_{\theta}$ on the right of the middle vertical line)


Fig. 2. Construction of the graphs $S_{\frac{\pi}{4}, 0, \frac{\pi}{2}}$ (top) and $S_{\frac{\pi}{4}, \frac{\pi}{2}, \frac{\pi}{2}}$ (bottom). And the intermediate graph $S_{\frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{2}}$ (center).
have period $P=(2,0,0)$, up to sign. Hence $\widetilde{S}_{\theta, \alpha, \frac{\pi}{2}}$ projects orthogonally in the $x_{2}$-direction onto the whole strip $\mathcal{B}=\left\{\left(x_{1}, 0, x_{3}\right) \mid-h<x_{3}<h\right\}$. Finally, let $\Pi: \widetilde{S}_{\theta, \alpha, \frac{\pi}{2}} \rightarrow \mathcal{B}$ be the orthogonal projection in the $x_{2}$-direction, $\Pi(p)=\left(x_{1}(p), 0, x_{3}(p)\right)$.
Proposition 1. The surface $\widetilde{S}_{\theta, \alpha, \frac{\pi}{2}}$ solves the Jenkins-Serrin problem on $S(h, a)$, for some $a \in\left(\frac{-1}{2}, \frac{1}{2}\right]$.
Proof. Firstly assume $\widetilde{S}_{\theta, \alpha, \frac{\pi}{2}}$ is a graph over the strip $\mathcal{B}, u: \mathcal{B} \rightarrow \widetilde{S}_{\theta, \alpha, \frac{\pi}{2}}$. Recall that $M_{\theta, \alpha, \frac{\pi}{2}}$ has horizontal Scherktype ends with period $(2,0,0)$ and that we obtain a fundamental domain of $M_{\theta, \alpha, \frac{\pi}{2}}$ by rotating $S_{\theta, \alpha, \frac{\pi}{2}}$ about one of the four straight lines in $\partial S_{\theta, \alpha, \frac{\pi}{2}}$. Hence the boundary of $\widetilde{S}_{\theta, \alpha, \frac{\pi}{2}}$ consists of straight lines whose orthogonal projection in the $x_{2}$-direction is formed by two rows of equally spaced points, which we can denote by $p_{n}=(n-a, 0,-h)$, $q_{n}=(n+a, 0, h)$, for $n \in \mathbb{Z}$ and some $a \in\left(\frac{-1}{2}, \frac{1}{2}\right]$, in such a way that $u$ diverges to $+\infty$ when we approach $\left(p_{2 k}, p_{2 k+1}\right),\left(q_{2 k}, q_{2 k+1}\right)$ and diverges to $-\infty$ when we approach $\left(p_{2 k-1}, p_{2 k}\right),\left(q_{2 k-1}, q_{2 k}\right)$ within $\mathcal{B}$, for every $k \in \mathbb{Z}$. This is, $\widetilde{S}_{\theta, \alpha, \frac{\pi}{2}}$ solves the Jenkins-Serrin problem on $S(h, a)$; see Definition 1. Therefore, to conclude Proposition 1 it suffices to prove that $\widetilde{S}_{\theta, \alpha, \frac{\pi}{2}}$ is a graph over $\mathcal{B}$.

Denote by $\mathcal{R}$ the piece of $S_{\theta, \alpha, \frac{\pi}{2}}$ which corresponds to the region of $\widetilde{\Sigma}_{\theta}$ shadowed in Fig. 1; this is, the rectangle of $\widetilde{\Sigma}_{\theta}$ on the right (resp. left) of the vertical line passing through $A, A^{\prime}$ (resp. $D^{\prime \prime}, D^{\prime \prime \prime}$ ) and above (resp. below) the horizontal line passing through $D^{\prime}, D^{\prime \prime}$ (resp. $D, D^{\prime \prime \prime}$ ). The boundary of $\mathcal{R}$ consists of a horizontal curve $c_{1}$ in $\mathbb{R}^{3}$ joining the branch points $D^{\prime \prime}, D^{\prime \prime \prime}$, two curves $c_{2}, c_{3}$ from $D^{\prime \prime}, D^{\prime \prime \prime}$, respectively, to the horizontal plane $\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{3}=-h\right\}$ and either two straight half-lines (when $\alpha \neq 0$ ) or a straight line (when $\alpha=0$ ) in $\left\{x_{3}=-h\right\}$. Since $R_{3}\left(c_{2}\right)=c_{3}$, then $\Pi\left(c_{3}\right)=\Pi\left(c_{2}\right)+(1,0,0)$.

Assume $\mathcal{R}$ is a graph over $\mathcal{B}$, and let us prove that the same holds for $\widetilde{S}_{\theta, \alpha, \frac{\pi}{2}}$. Suppose by contradiction there exist two points $p, q \in \widetilde{S}_{\theta, \alpha, \frac{\pi}{2}}$ with $\Pi(p)=\Pi(q)$. In particular, $x_{1}(p)=x_{1}(q)$. Since $\mathcal{D}\left(x_{1}, x_{2}, x_{3}\right)=\left(-x_{1},-x_{2},-x_{3}\right)$ and $\mathcal{R}$ is a graph over $\mathcal{B}$, we can assume $p \in \mathcal{R}$ and $q \in R_{3}(\mathcal{R})$. Let us call $p^{\prime}$ the point in $c_{2}$ at the same height as $p, q$ (in particular, $p^{\prime}, p, q$ correspond to three points in the same vertical line of $\widetilde{\Sigma}_{\theta}$ ). Hence, by using the isometry $R_{3}$ and the fact that $\mathcal{R}$ is a graph over $\mathcal{B}$, we deduce $x_{1}\left(p^{\prime}\right)<x_{1}(p)<x_{1}\left(p^{\prime}\right)+1<x_{1}(q)$, a contradiction.

Therefore, let us prove that $\mathcal{R}$ is a graph over $\mathcal{B}$. The spherical image of $\mathcal{R}$ by its Gauss map is contained in a quarter of a sphere in $\mathbb{S}^{2} \cap\left\{x_{2}>0\right\}$, so $\mathcal{R}$ is either a graph or a multigraph over $\mathcal{B}$. The following Lemma 1 allows us to conclude that $\mathcal{R}$ cannot be a multigraph, which finishes Proposition 1 .


Fig. 3. The Jenkins-Serrin graph $\widetilde{S}_{\frac{\pi}{200}}, 0, \frac{\pi}{2}$, close to the singly periodic Scherk limit.
Lemma 1. The restriction of $\Pi$ to $\sigma=c_{3} \cup c_{1} \cup c_{2}$ is one to one.
Proof. We identify $\sigma$ with its corresponding curve in $\Sigma_{\theta}$. Without loss of generality, we can assume that $\sigma$ lies in the same branch of the $w$-map (i.e. $w$ is univalent along $\sigma$ ). Thus we can see $z$ as a parameter on $\sigma$, and so $\sigma=\{z=\mathrm{i} t \mid-1<t<1\}$. In particular, we can write the first and third coordinates of $M_{\theta, \alpha, \frac{\pi}{2}}$ along $\sigma$, denoted by $X_{1}$ and $X_{3}$ respectively, as functions of $t$. Since the horizontal level sections of $M_{\theta, \alpha, \frac{\pi}{2}}$ correspond to vertical segments in $\widetilde{\Sigma}_{\theta}$, it follows that both $\left.X_{3}\right|_{c_{2}},\left.X_{3}\right|_{c_{3}}$ are strictly monotone. Furthermore, the restriction of $X_{1}$ to $c_{1}=\left\{z=\mathrm{i} t| | t \mid<\lambda_{\theta}^{-1}\right\}$ is also strictly monotone because

$$
\begin{aligned}
X_{1}(t) & =\frac{1}{2} \mathfrak{R} \int_{-\mathrm{i} \lambda_{\theta}^{-1}}^{\mathrm{i} t}\left(\frac{1}{g}-g\right) \mathrm{d} h \\
& =\mu \int_{-\lambda_{\theta}^{-1}}^{t} \frac{1-s^{4}}{\left(1-2 s^{2} \cos (2 \alpha)+s^{4}\right) \sqrt{\left(\lambda_{\theta}^{2}-s^{2}\right)\left(\lambda_{\theta}^{-2}-s^{2}\right)}} \mathrm{d} s .
\end{aligned}
$$

Since the $\Pi$-projections of $c_{1}, c_{2}, c_{3}$ are separately embedded and only intersect at the common extrema, we conclude Lemma 1.

Remark 1. Recall that the period lattice of $M_{\theta, \alpha, \frac{\pi}{2}}$ is generated by $P=(2,0,0)$ and $T=\left(T_{1}, 0, T_{3}\right), T_{3} \neq 0$. Then $h=\frac{1}{4}\left|T_{3}\right|$ and $a=\frac{1}{4}\left|T_{1}\right|$ in Proposition 1. In particular, it must hold that $T_{1}^{2}+T_{3}^{2}>4$.

## 4. Limit graphs of $\tilde{S}_{\theta, \alpha, \frac{\pi}{2}}$

We know [7] that $M_{\theta, \alpha, \frac{\pi}{2}}$ converges to two singly periodic Scherk minimal surfaces of angle ${ }^{1} \frac{\pi}{2}$ when $\theta \rightarrow 0$. Let us recall how we can see the singly periodic Scherk minimal surface of angle $\frac{\pi}{2}$ as a Jenkins-Serrin graph on the half-plane. Consider half a strip $\left\{0 \leq x_{1} \leq 1, x_{3} \geq 0\right\}$, with boundary data 0 on the vertical straight half-lines and $+\infty$ on the unit straight segment in between. By rotating about the boundary half-lines, we obtain a Jenkins-Serrin graph $\widetilde{S}_{1 p}$ on the half-plane with boundary values $\pm \infty$ on $\left\{x_{3}=0\right\}$ disposed alternately on unitary edges, which is half a singly periodic Scherk minimal surface of angle $\pi / 2$ and period $(2,0,0)$.
We have proven that $\widetilde{S}_{\theta, \alpha, \frac{\pi}{2}}$ is a graph over the marked strip $S(h, a)$, where $h=\frac{1}{4}\left|T_{3}\right|$ and $a=\frac{1}{4}\left|T_{1}\right|$. Translate $\widetilde{S}_{\theta, \alpha, \frac{\pi}{2}}$ by $(a, 0, h)$. Then this translated $\widetilde{S}_{\theta, \alpha, \frac{\pi}{2}}$ converges to $\widetilde{S}_{1 p}$, when $\theta \rightarrow 0$ (see Fig. 3). By using the isometry $\mathcal{D}$, we obtain that the translated $\widetilde{S}_{\theta, \alpha, \frac{\pi}{2}}$ by $(-a, 0,-h)$ has a similar behavior. In particular, when $\theta \rightarrow 0$, the width of the strip diverges to $+\infty$ (i.e. $\left|T_{3}\right| \rightarrow+\infty$ ).

When $\theta \rightarrow \frac{\pi}{2}$ and $\alpha \rightarrow \alpha_{\infty} \neq 0, M_{\theta, \alpha, \frac{\pi}{2}}$ converges to two doubly periodic Scherk minimal surfaces of angle $\alpha_{\infty}$ and periods of length 1 . Half such a doubly periodic Scherk example can be seen as a Jenkins-Serrin graph $\mathcal{S}_{2 p}$ on the corresponding rhombus with alternating boundary data $\pm \infty$.

[^1]

Fig. 4. The Jenkins-Serrin graphs $S_{\frac{49 \pi}{100}, \frac{\pi}{4}, \frac{\pi}{2}}$ (left) and $S_{\frac{49 \pi}{100}, \frac{\pi}{2}, \frac{\pi}{2}}$ (right), close to doubly periodic Scherk minimal surfaces.


Fig. 5. The Jenkins-Serrin graph $\widetilde{S}_{\frac{49 \pi}{100}, 0, \frac{\pi}{2}}$, close to the helicoid limit.
Denote by $\mathcal{P}_{n}$ the rhombus of vertices $p_{n}, p_{n+1}, q_{n+1}, q_{n}$, for every $n \in \mathbb{Z}$, and let $M_{n}$ be the piece of $\widetilde{S}_{\theta, \alpha, \frac{\pi}{2}}$ over $\mathcal{P}_{n}$, translated so that $x_{2}=0$ in the middle point of $M_{n}$ (i.e. the point in $M_{n}$ which projects onto the middle point of $\mathcal{P}_{n}$ ). For any $k \in \mathbb{Z}, M_{2 k}$ converges to $\mathcal{S}_{2 p}$, when $\theta \rightarrow \frac{\pi}{2}$ and $\alpha \rightarrow \alpha_{\infty}$ (see Fig. 4); and $M_{2 k-1}$ converges to the reflected image of $\mathcal{S}_{2 p}$ across the $x_{1} x_{3}$-plane. In this case, $T_{1}^{2}+T_{3}^{2} \rightarrow 4$ and $T_{3} \nrightarrow 0$. Moreover, for each $T_{1, \infty}, T_{3, \infty}$ with $T_{1, \infty}^{2}+T_{3, \infty}^{2}=4$ and $T_{3, \infty} \neq 0$, there exists a $\mathcal{S}_{2 p}$ which is graph over the parallelogram determined by $(1,0,0),\left(T_{1, \infty}, 0, T_{3, \infty}\right)$; and this $\mathcal{S}_{2 p}$ is obtained as a limit of translated graphs $S_{\theta, \alpha, \frac{\pi}{2}}$.

When $\theta \rightarrow \frac{\pi}{2}$ but $\alpha \rightarrow 0$, the dilated KMR example $\frac{1}{\mu} M_{\theta, \alpha, \frac{\pi}{2}}$ converges to two vertical helicoids spinning oppositely. Let $\mathcal{H}$ be half a fundamental domain of the vertical helicoid bounded by two horizontal straight lines, both projecting vertically onto the same straight line $\ell \subset\left\{x_{3}=0\right\}$. Assume $x_{1}(\ell)=0$ and that the projection of $\partial \mathcal{H}$ in the $x_{2}$-direction consists of two points at heights $-h$ and $h$. Thus the interior of $\mathcal{H}$ can be seen as a graph onto the strip $\left\{\left(x_{1}, 0, x_{3}\right) \mid-h<x_{3}<h\right\}$, with boundary data $+\infty$ on $\left\{x_{1}>0, x_{2}=0, x_{3}=h\right\} \cup\left\{x_{1}<0, x_{2}=0, x_{3}=-h\right\}$, and $-\infty$ on $\left\{x_{1}>0, x_{2}=0, x_{3}=-h\right\} \cup\left\{x_{1}<0, x_{2}=0, x_{3}=h\right\}$. As $\theta \rightarrow \frac{\pi}{2}$ and $\alpha \rightarrow 0$, the suitably translated graphs $\frac{1}{\mu} S_{\theta, \alpha, \frac{\pi}{2}}$ converge to $\mathcal{H}$ (see Fig. 5). And different translations of the surfaces $\frac{1}{\mu} S_{\theta, \alpha, \frac{\pi}{2}}$ converge, when $\theta \rightarrow \frac{\pi}{2}$ and $\alpha \rightarrow 0$, to another half of a vertical helicoid spinning oppositely. In this case, $T_{1}^{2}+T_{3}^{2} \rightarrow 4$ and $T_{3} \rightarrow 0$.

## 5. Proof of Theorem 1

Denote by $\mathcal{M}$ the family of graphs

$$
\mathcal{M}=\left\{\left.\tilde{S}_{\theta, \alpha, \frac{\pi}{2}} \right\rvert\, \theta \in\left(0, \frac{\pi}{2}\right), \alpha \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right]\right\} .
$$

Recall that we could have defined the graphs $\widetilde{S}_{\theta, \frac{-\pi}{2}, \frac{\pi}{2}}$ in a similar way, but $\widetilde{S}_{\theta, \frac{-\pi}{2}, \frac{\pi}{2}}=\widetilde{S}_{\theta, \frac{\pi}{2}, \frac{\pi}{2}}$. From the classification of the KMR examples [7], we know that no two surfaces in $\mathcal{M}$ coincide. This family $\mathcal{M}$ can be naturally endowed with the product topology given by its parameters $(\theta, \alpha)$. Furthermore, we know the surfaces obtained by taking limits from graphs in $\mathcal{M}$ (see Section 4). We deduce that the boundary $\partial \mathcal{M}$ of $\mathcal{M}$ has two components: an isolated point $\{\star\}$ corresponding to the singly periodic Scherk limit $\widetilde{S}_{1 p}$, and a closed curve $\Gamma$ corresponding to the union of the family of doubly periodic Scherk limits and the helicoidal limit (recall that the helicoid can be obtained as a limit surface of doubly periodic Scherk minimal examples). Hence $\mathcal{M}$ is topologically a punctured disk $D-\{\star\}$, where $\Gamma$ is the boundary of the disk $D$.

Recall the collection of marked strips defined just after Definition 1,

$$
\mathcal{S}=\left\{S(h, a) \mid h>0 \text { and } a \in\left(\frac{-1}{2}, \frac{1}{2}\right] \text { satisfy } a^{2}+h^{2}>\frac{1}{4}\right\} .
$$

Since $S\left(h, \frac{-1}{2}\right)=S\left(h, \frac{1}{2}\right)$, the family $S$ can be topologized by the natural map $S(h, a) \in S \stackrel{H}{\mapsto}(h, a) \in \mathbb{R}^{+} \times(\mathbb{R} / \mathbb{Z})$. Note that the parameter $a$ goes necessarily to 0 when $S(h, a) \in \mathcal{S}$ and $h \rightarrow+\infty$. After identifying $\mathcal{S}$ with its
image through $H$, we obtain that $\mathcal{S}$ is topologically a punctured disk $D-\{\star\}$, and the boundary of $\mathcal{S}$ consists of two components: the curve $\left\{(h, a) \left\lvert\, h^{2}+a^{2}=\frac{1}{4}\right.\right\}$, which corresponds to $\Gamma=\partial D$, and $\{(+\infty, 0)\}$, which corresponds to $\{\star\}$.

Proposition 1 and Remark 1 let us define the continuous map

$$
\begin{array}{rll}
\phi: \mathcal{M} \equiv D-\{\star\} & \longrightarrow & \mathcal{S} \equiv D-\{\star\} \\
\widetilde{S}_{\theta, \alpha, \frac{\pi}{2}} & \mapsto & S\left(\frac{1}{4}\left|T_{3}\right|, \frac{1}{4}\left|T_{1}\right|\right)
\end{array}
$$

which can be continuously extended to the boundaries so that $\phi(\star)=\star$ and $\phi(\partial D)=\partial D$, using Section 4 .
Since the conjugate graph of $\widetilde{S}_{\theta, \alpha, \frac{\pi}{2}}$ is contained in $\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid 0<x_{2}<1\right\}$, then the following lemma implies that $\phi$ is injective.

Lemma 2 (Mazet, [5]). Let $\Omega$ be a convex polygonal domain with unitary edges, and $M$ be a minimal (vertical) graph on $\Omega$ with boundary data $\pm \infty$ disposed alternately, and whose conjugate graph lies on a horizontal slab of width 1 . Then $M$ is unique up to a vertical translation.

It is not difficult to obtain that $\phi$ is onto from the fact that it is continuous, injective and $\phi(\star)=\star, \phi(\partial D)=\partial D$. This proves the first part in Theorem 1.

The uniqueness part in Theorem 1 about the graphs $\widetilde{S}_{\theta, \alpha, \frac{\pi}{2}}$ can be also deduced from Lemma 2 as above. This finishes the proof of Theorem 1.

## Acknowledgements

This research was partially supported by grants from Région Ile-de-France and a MEC/FEDER grant no. MTM2004-02746.

The author would like to thank Martin Traizet, who motivated this work during her stay in the University of François Rabelais at Tours.

## References

[1] H. Jenkins, J. Serrin, Variational problems of minimal surface type II. Boundary value problems for the minimal surface equation, Arch. Ration. Mech. Anal. 21 (1966) 321-342.
[2] H. Karcher, Embedded minimal surfaces derived from Scherk's examples, Manuscripta Math. 62 (1988) 83-114. MR0958255, Zbl 658.53006.
[3] H. Karcher, Construction of minimal surfaces, in: Surveys in Geometry, 1989, pp. 1-96. University of Tokyo, 1989 and Lecture Notes, No. 12, SFB256, Bonn, 1989.
[4] L. Mazet, Adding handle to half-plane layers, preprint.
[5] L. Mazet, A uniqueness result for maximal surfaces in Minkowski 3-space, preprint.
[6] J. Pérez, M.M. Rodríguez, M. Traizet, The classification of doubly periodic minimal tori with parallel ends, J. Differential Geom. 69 (3) (2005) 523-577. MR2170278, Zbl pre05004289.
[7] M.M. Rodríguez, The space of doubly periodic minimal tori with parallel ends: The standard examples, Michigan Math. J. 55 (1) (2007) (in press).


[^0]:    E-mail address: Magdalena.Rodriguez@univ-mlv.fr.

[^1]:    ${ }^{1}$ We define as the angle of a singly or doubly periodic Scherk minimal surface the angle between its nonparallel ends.

